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INTRODUCTION

Type 2 immunity involves both adaptive 
and innate immune responses to pathogens 
and toxic substances. However, when these 
mechanisms are upregulated in response 
to an innocuous allergen or stimulus, a 
range of Type 2-associated inflammatory 
diseases can occur. Type 2 inflammation 
plays a role in triggering and progression 
of SA, CRSwNP, and EGPA. These diseases 
affect airway epithelium and show some 
common features including inflammatory 
cell trafficking into airway tissues, epithelial 
barrier disruption, goblet cell hyperplasia, 
increased mucus production, and  
tissue remodelling (Figure 1).1,2

One mechanism behind Type 2 inflammation 
is characterised by the production of IgE by 
B cells, following their activation by T-helper 
2 (Th2) cells (Figure 1).1,2 This mechanism 
also involves a number of other immune 
cells and factors that together contribute 
to development and progression of SA, 
CRSwNP, and EGPA. Here though, the 
authors focus on the cytokine IL-5, whose 
role in such conditions is highlighted by 
the efficacy of IL-5-targeting therapies.1 
While IL-5 is produced by, and has actions 
on, a number of immune cells, including 
Th2 cells, mast cells, and Type 2 innate 
lymphoid cells (ILC2), another focus here 
will also be on eosinophils (Figure 1).2 This 
was prompted by a discussion by a board 
of experts, who highlighted the importance 
of understanding the impact of IL-5 and 
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Abstract
Type 2 inflammation is involved in severe asthma (SA), chronic rhinosinusitis with nasal polyps 
(CRSwNP), and eosinophilic granulomatosis with polyangiitis (EGPA). The pathogenesis 
of these diseases involves various immune system cells and target tissues, along with 
numerous cytokines, chemokines, and other inflammatory molecules. The role of eosinophils 
and the cytokine IL-5 and its receptor (IL-5R) is becoming a significant focus in these 
diseases, with numerous studies, from in vitro experiments to clinical trials, demonstrating 
correlations between IL-5 levels with eosinophil numbers and activity in SA, CRSwNP, and 
EGPA. Eosinophils and IL-5 are involved, both directly and indirectly, in disease initiation and 
exacerbation, as well as in tissue remodelling and disease progression. An advisory board 
of experts discussed how understanding the actions of IL-5 within Type 2 inflammation in 
SA, CRSwNP, and EGPA can highlight the importance of its role in managing patients with 
these diseases and help identify suitable biomarkers for disease onset, exacerbation, and 
progression. Therapies targeting eosinophil generation, priming, and activation could lead 
to more effective disease control and help prevent the tissue damage associated with these 
conditions, which can be difficult to reverse in chronic cases.
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eosinophils in SA, CRSwNP, and EGPA when 
managing patients with these diseases.3 

EOSINOPHILS AND  
IL-5 INVOLVEMENT IN  
TYPE 2 INFLAMMATION

Eosinophils are bone marrow-derived 
leucocytes found in abundance in SA, 
CRSwNP, and EGPA, both locally, including 
in airway epithelium, and remotely  
(Figure 2).4-6 Even in people without 
asthma or those who do not smoke,  
higher blood eosinophil counts (>400 
cells/μL) are frequently, although not 
necessarily, associated with airflow 
obstruction and lung function decline.7

Eosinophils are major releasers of 
inflammatory mediators, including 
IL-5 and other cytokines, chemokines, 
granule proteins, and lipid mediators 
(Figure 1).8 The presence of IL-5, along 
with IL-3 and granulocyte-macrophage 
colony-stimulating factor (GM-CSF), 
may also enhance the responsiveness of 
eosinophils to other stimuli and activation 
of downstream pathways. This can lead to 
a ‘hyperresponsive’ phenotype including 
increased levels of eosinophil degranulation 
and inflammation.9 As part of this, IL-5 
expression can upregulate eosinophil 
extracellular trap-forming cell death, 
increasing inflammation and tissue damage.10 
In this process, released extrudate includes 
the granule proteins eosinophil-derived 
neurotoxin (EDN), eosinophil peroxidase, 

Figure 1: The overarching role of IL-5 and eosinophils in severe asthma, chronic rhinosinusitis with nasal polyps, 
and eosinophilic granulomatosis with polyangiitis. 

CRSwNP: chronic rhinosinusitis with nasal polyps; EGPA: eosinophilic granulomatosis with polyangiitis; IL: interleukin; 
ILC2s: type 2 innate lymphoid cells; NKT: natural killer T; TH2: T-helper 2; TSLP: thymic stromal lymphopoietin.
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major basic protein (MBP), and eosinophil 
cationic protein (ECP). Extrudate can also 
include chromatic structures (‘DNA traps’ or 
‘eosinophil extracellular traps’), cytokines 
(including IL-5), chemokines, enzymes, and 
growth factors (Figure 1).8,11 

Eosinophils have numerous downstream 
and bidirectional effects that contribute to 
the pathogenesis of Type 2 inflammation.8 
For example, they can act together with 
mast cells in allergic reactions, with 
histamine released from such cells inducing 
eosinophil chemotaxis (Figure 1),12 and can 
stimulate lymph node T cells to produce 
IL-5 following an allergen challenge.13 
Eosinophils may also have a direct role on 
both naïve and memory B cell proliferation, 
secretion of IgA, IgG, and IgM from B cells, 
and B cell survival, in peripheral blood 
and tissues. In vitro studies show that this 
may occur through direct contact or, to a 
lesser extent, through contact of B cells 
with eosinophil-derived soluble factors, 

independently from other B cell modulators 
such as T cell derived cytokines.14

Eosinophil activity is primarily directed by 
IL-5 through the IL-5Ra subunit. This is 
specific to IL-5, unlike the beta-subunit, 
which is also shared by IL-3 and GM-
CSF.15 IL-5 and IL-5Ra play a significant 
role in eosinophil growth, maturation, 
and differentiation in the bone marrow; 
in eosinophil proliferation, activation, and 
recruitment throughout the body; and 
eosinophil survival and mortality.15-17 The 
IL-5R is also expressed, to a lesser extent, 
on other immune cells, such as neutrophils, 
basophils, B cells, and mast cells, as well 
as on non-immune cells associated with 
the airway epithelium, including ciliated 
epithelial cells and lung fibroblasts 
(Figure 3).16,18-21 This widespread activity 
is postulated to underpin the sometimes 
broad effects of IL-5 targeting treatments.1 

Figure 2: Eosinophil-related disorders according to blood eosinophilia. 
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Adapted from Lombardi et al.3 2024 under CC-BY-NC-4.0.

CRSwNP: chronic rhinosinusitis with nasal polyps; EGPA: eosinophilic granulomatosis with polyangiitis;  
EoE: eosinophilic oesophagitis; HES: hypereosinophilic syndrome.
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SEVERE ASTHMA AND  
CHRONIC RHINOSINUSITIS  
WITH NASAL POLYPS

CRSwNP and SA are respectively 
characterised as upper and lower airway 
diseases. Disruption to the respiratory 
system can occur due to various inducers, 
including allergens, and triggers, such as 
smoking, infections, and pollution. When 
such inducers and/or triggers are present  
at the airway epithelium, the ‘alarmins’  
IL-25, IL-33, and thymic stromal 
lymphopoietin signal to eosinophils,  
ILC2s, dendritic cells, and Th2 cells.  
These can, in turn, secrete Type 2 
cytokines, including IL-5 (Figure 1).1,15 

IL-5 and Eosinophils in Severe Asthma
Asthma symptoms can range from mild, 
episodic wheezing to chronic airway 
narrowing and life-threatening episodes. 
These symptoms are caused by the 
actions of innate and adaptive immune 
cells, along with epithelial cells, causing 
airway hyperresponsiveness, inflammation, 
excessive mucus production, and tissue 
remodelling.22 Of the approximately 300 
million people worldwide with asthma,22 an 
estimated 5−12% have a chronic, severe form 
(SA), which in some may be uncontrolled.23 
Despite advances in management over the 
decades, there are globally an estimated 
1,000 deaths a day due to asthma.22

Figure 3: IL-5 signalling in different cell types. 

Adapted from Bachert et al.2 2023

CRSwNP: chronic rhinosinusitis with nasal polyps; CTL: cytotoxic T lymphocyte; IL: interleukin; ILC2: innate lymphoid 
cell type 2; TH2: T-helper 2 cells.
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At least 84% of adults with SA may have 
eosinophilic ‘T2-high’ asthma,5 characterised 
by blood eosinophils ≥150 cells/μL, the 
presence of tissue eosinophils, IgE >114 kUL-1, 
and fractional concentration of exhaled nitric 
oxide (FeNO) >19.5 parts per billion (though 
of note, precise levels of each may differ 
between guidelines).1 People with eosinophilic 
SA are more likely to be female, have adult-
onset asthma and nasal polyps,5 and have 
higher levels of blood and sputum eosinophil 
progenitors, ILC2s, and CD4+ T cells.24 

Eosinophilic inflammation in people with 
asthma is associated with worse lung function 
and airflow obstruction over time compared 
to those without such inflammation.25 In vitro 
studies show that eosinophils from people 
with asthma can induce smooth muscle 
cell contraction, potentially contributing to 
asthma symptoms.26 Typically, people with 
eosinophilic asthma require high doses of oral 
steroids to achieve disease control and they 
may be refractory to inhaled corticosteroids.22 
Notably, there is an approximately 1.4-fold 
increase in the likelihood of ≥2 exacerbations 
if blood eosinophil count is >400 cells/μL, 
compared with ≤400 cells/μL, suggesting that 
levels of these cells could be used to predict 
asthma exacerbation risk.27 This risk can more 
comprehensively be calculated by also taking 
into account FeNO and presence of clinical 
risks, such as comorbidities or  
environmental exposure.28 

Two distinct subtypes of eosinophils have 
been identified in vivo with regard to airway 
diseases: IL-5-dependent inflammatory 
eosinophils (iEOS) and non-IL-5-dependent 
tissue-resident eosinophils (rEOS).29-31 In 
eosinophilic SA (or models of such), iEOS 
are found in peripheral blood, nasal polyps,30 
and the lungs.29 In peripheral blood, iEOS 
have increased activation markers and in 
nasal polyps they have increased IL-3R 
and IL-5R, with the percentage of iEOS 
correlating with eotaxin-3 expression.30 
There is significant correlation between 
peripheral blood iEOS proportion and 
asthma severity, exacerbations, and nasal 
polyp numbers.31 In general, in patients with 
asthma, the proportion of circulating iEOS to 
total eosinophil count is significantly higher 
compared with healthy controls.32 Following 
a trigger, iEOS can infiltrate the airways from 

the blood.29 However, with IL-5 inhibition and 
gains in asthma control, there is a reduction 
of iEOS and an increase in rEOS.31 

Granular proteins and DNA traps released 
from eosinophils can increase airway 
inflammation in SA33 and damage structural 
cells in the lung.34 These proteins are 
involved in airway remodelling by modulating 
fibroblast and smooth muscle cell activity, 
leading to muscle hyperplasia and 
hypertrophy.35 Studies on specific granular 
proteins have shown that MBP levels are 
significantly elevated in sputum from 
patients with asthma,36 especially during 
exacerbations,36 and that eosinophils and 
MBP are abundant in bronchial tissue in 
cases of fatal asthma.37 Further, ECP is raised 
in serum in allergen-provoked asthma.38 With 
this in mind, granule protein levels could be 
useful biomarkers for SA exacerbations. 

Mucus plugs are present in many patients 
with asthma, causing airflow obstruction. 
They can significantly contribute to 
SA pathology and to fatalities during 
asthma exacerbations,39,40 so are a critical 
therapeutic target in SA. There is a 
correlation between mucus plug development 
and eosinophil number, IL-5 expression, and 
eosinophil peroxidase levels. The latter is 
associated, alongside reactive oxidants, with 
changes to mucin polymers shown in mucus 
plugs, with eosinophil granule proteins as 
a whole associated with increased mucus 
viscosity. These elements combined also 
exhibit decreased degradation to usual 
mucus-eliminating factors such as proteases, 
and increased contribution to inflammatory 
mechanisms.39,41 Another marker of 
eosinophilic inflammation is the formation 
of ‘Charcot–Leyden crystals’ (CLC) from 
galectin-10. Combined, CLCs and DNA traps 
can also form part of mucus plugs42 (Figure 1) 
where they contribute to airway obstruction 
impenetrable to bronchodilators.39 

Several findings highlight the role of IL-5 
in asthma. For example, this cytokine is 
upregulated in bronchial mucosa following 
allergen exposure,43 and serum IL-5 levels 
are higher in people with SA compared 
to those with mild or no asthma.44 During 
asthma exacerbations, IL-5 and eotaxin 
expression can promote eosinophilic 
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recruitment to airway epithelium, leading 
to airway hyperresponsiveness.16 Not only 
during attacks but also in people with stable 
asthma, IL-5 levels are inversely correlated 
with apoptotic eosinophil counts.45 In allergic 
asthma, eosinophil numbers correlate 
with high levels of IL-5 in sputum, serum, 
peripheral blood T cell supernatants, and 
bronchoalveolar lavage fluid (BALF).15,46-48 
Increased soluble IL-5Ra is also found in 
BALF following allergen challenge, indicating 
eosinophil tissue migration across the 
epithelium, as the receptor is shed at this 
point.49 Further, FeNO levels correlate with 
both airway IL-5 and eosinophils in SA, but 
not blood eosinophil count, suggesting that 
assessing systemic versus airway Type 2 
inflammation may be more accurate when 
combining blood eosinophil counts  
with FeNO measurements.50

Of particular importance are correlations 
between IL-5 and disease pathogenesis  
and severity. For example, higher IL-5 
expression in BALF is associated with 
increased asthma symptoms, abnormal 
airway physiology, and decreased pulmonary 
function.43,51 IL-5 can also promote eosinophil 
degranulation, associated with bronchial 
epithelium injury.16,52 That this cytokine may 
be involved in decreasing epithelial barrier 
integrity and tissue damage is evidenced 
by an in vitro study showing  that IL-5 
signalling to airway epithelial cells can lead to 
downregulation of adhesion molecules.20 In 
vivo, IL-5 expression has also been associated 
with peri-bronchial smooth muscle layer 
thickening and peri-bronchial fibrosis in airway 
remodelling, attributed to eosinophil action.53 
One possible downstream mechanism for 
these findings involves tumour growth factor-β, 
which is secreted by eosinophils in people 
with SA54 and can promote myofibroblast 
transformation, leading to airway remodelling.34 
Such remodelling is associated with higher 
asthma medication use, reduced lung function, 
and airway hyperresponsiveness.55 These 
findings are significant because they suggest 
a role for disease modification through IL-
5-targeting, glucocorticoid-sparing means. 
Indeed, blocking IL-5 can lead to a significant 
decrease in circulating eosinophil levels56,57 
and can significantly reduce levels of lung 
eosinophils in patients with corticosteroid-
resistant asthma.56

While there is an intimate relationship 
between eosinophils and IL-5, it is not 
exclusive. Airway remodelling can occur 
without eosinophilic inflammation,55 
suggesting that other IL-5-expressing cells 
may play a role in SA pathogenesis. For 
example, ILC2 numbers are increased in the 
airways following an allergen challenge,58 and 
these cells are a source of IL-5 in the lungs 
of people with asthma (Figure 1 and Figure 
3).59 IL-5 can also enhance histamine release 
from basophils in vitro;60 however, there is an 
inverse relationship between rate of activated 
basophils and effectiveness of IL-5-targeting 
therapy.61 Further, in asthma, elevated 
synthesis of airway collagen may be driven 
by IL-5 activation of fibroblasts and IL-5Ra 
expression in lower airway lung fibroblasts is 
significantly greater in people with asthma 
compared with healthy controls.21 This 
suggests that cells other than eosinophils 
could also be a target for decreasing  
SA manifestations.

IL-5 and Eosinophils in Chronic 
Rhinosinusitis with Nasal Polyps 
Global prevalence estimates for CRSwNP are 
between 1.1−4.4%.62 Symptoms of CRSwNP 
include not only nasal polyps but also 
inflamed mucosa, postnasal drip, frontal sinus 
pain and pressure, and airway impedance.63 
Notably, CRSwNP and asthma may be 
comorbid,62,64 with comorbidity increasing 
CRSwNP severity,64,65 asthma exacerbation 
frequency,64,66 and oral corticosteroid use, 
and decreasing health-related quality of life.62 

CRSwNP predominantly arises due to Type 
2 inflammation.67 This may drive nasal polyp 
formation through oedema, plasma protein 
retention, and fibrin deposition.68 Several 
findings point to the role of IL-5 in CRSwNP. 
Similar to SA, in this disease epithelial cell 
alarmins can lead to ILC2 activation and to 
IL-5 accumulation and production (Figure 1).10 
Such upregulation of IL-5 in nasal polyps69 
correlates with CRSwNP severity.17 Higher 
levels of IL-5 in nasal secretions and nasal 
polyp tissue are especially shown in people 
with uncontrolled CRSwNP, compared to 
those where it is controlled, with higher  
nasal secretion of IL-5 correlating with 
a higher number of polyp surgeries.70 
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Elevated IL-5 levels have also been shown 
in nasal polyps associated with aspirin-
exacerbated respiratory disease, alongside 
high numbers of antibody-secreting cells, 
including plasma cells and plasmablasts. 
Increased expression of IL5-Ra in such 
patients is proposed to have a role in local 
antibody production and is correlated with 
disease severity and recurrence of nasal 
polyposis.71,72 That IL-5Ra might have a role 
in epithelial-mesenchymal cell transition in 
CRSwNP is evidenced in an investigation of 
another disease, pulmonary fibrosis, where 
the receptor was upregulated in such cells as 
fibrosis progressed.73 Other IL-5R-expressing 
cells found elevated in people with CRSwNP 
include IgG+ B cells, basophils, mast cells, 
and ILC2s, indicating a potential IL-5-linked 
role of these cells in disease pathology.6

Similar to airway epithelium in SA, the 
increased presence of eosinophils and other 
Type 2 inflammatory cells is shown in polyps 
in CRSwNP.68 Eosinophil-dominant CRSwNP 
features include dysosmia, nasal discharge, 
multiple bilateral polyps, involvement of the 
ethmoid sinus and accompanying asthma, 
drug allergies, and aspirin intolerance.74 
Eosinophilia is more marked in patients 
where CRSwNP reappears following 
surgery, compared to a higher neutrophil 
number in patients where surgery is more 
successful.74 IL-5 can promote eosinophil-
associated inflammation in CRSwNP,75 and 
upregulation of leukotrienes in eosinophils, 
as well as in mast cells and basophils, 
in CRSwNP is potentially via IL-5/IL-5Ra 
signalling as inhibition of this receptor 
subunit in patients with CRSwNP results 
in downregulation of these inflammatory 
molecules.19,76 Furthermore, the release of 
IL-5 from eosinophils can lead to B cell Ig 
class switching.6 

The actions of eosinophils in CRSwNP 
may lead to collagen deposition, fibroblast 
activation, epithelial damage, and 
dysosmia.6,77 These may be due to the 
release of eosinophil granule proteins. For 
example, in eosinophil-dominant CRSwNP, 
ECP levels in nasal secretions correlate 
with polyp severity and the presence of 
asthma.78 Additionally, EDN is found at high 
levels in nasal polyps and serum EDN levels 
are significantly higher in patients with 

eosinophilic CRSwNP compared with other 
nasal diseases, correlated with disease 
activity. IL-5 plays a role here with in vitro 
stimulation of eosinophils with this cytokine 
leading to EDN production and stimulation 
of nasal epithelial cells, and EDN presence 
resulting in changes in genes associated with 
epithelial-mesenchymal transition.79 CLCs 
from eosinophils are also abundant in nasal 
polyps, co-located in areas of eosinophil 
extracellular trap-forming cell death, and 
positively correlating with levels of IL-5.42 
Levels of CLC-associated galactin-10 also 
correlate with CRSwNP severity.80 These 
findings point to a need to more fully 
understand the relationship between IL-5 and 
eosinophils in CRSwNP pathology.

IL-5 AND EOSINOPHILS IN 
EOSINOPHILIC GRANULOMATOSIS  
WITH POLYANGIITIS

Also being investigated, though to a lesser 
extent than has been carried out for SA 
and CRSwNP, is the role of IL-5 in EGPA, 
another disease that can have Type 2 
inflammatory processes feature in its 
pathogenesis. Known originally as Churg–
Struss syndrome, EGPA is characterised by 
multisystem tissue eosinophilia, which leads 
to eosinophil-rich granulomatous infiltration, 
small-vessel necrotising vasculitis, disease-
onset asthma, recurrent rhinitis and sinusitis, 
and, in some cases, polyposis. Peripheral 
blood eosinophilia in EGPA can typically 
be >1,000−1,500 cells/μL, with eosinophil 
levels correlating with disease activity. EGPA 
is typically diagnosed in adulthood, with 
prevalence estimates ranging from 10.7−18.0 
per 1,000,000.4,81-84 

EGPA can be either antineutrophil 
cytoplasmic antibody (ANCA)-positive, in 
around 30−40% of patients who present 
more often with vasculitic lesions, or ANCA-
negative, where eosinophil-related organ 
infiltration is more prominent.4,81,82 The 
disease usually progresses through several 
phases: a prodromal phase dominated 
by asthma and chronic rhinosinusitis; 
a phase with increased eosinophil and 
organ involvement, such as lung infiltrates 
and cardiomyopathy; and a vasculitic 
phase, which may include neuropathy, 
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glomerulonephritis, and palpable purpura. 
These phases may not occur sequentially 
and can overlap.4,81,82 Immunosuppressive 
therapies can be used to block vasculitis-
associated inflammation, leading to vasculitis 
remission, but may not impact other phases 
and/or may lead to treatment-related  
damage accrual.85

Eosinophils are one of the primary cell 
types involved in the pathogenesis of EGPA. 
Increased presence of these cells may 
lead to tissue damage in EGPA through the 
secretion of granule proteins.81 For example, 
eosinophils may have a direct role in EGPA-
related axonal neuropathy and prothrombotic 
endothelial damage, causing irreversible 
peripheral nerve damage.86 In patients with 
EGPA-associated cardiac damage, peripheral 
eosinophilia is also notably pronounced.82 
Eosinophils develop from IL-5R-expressing 
CD34+ progenitor cells, and IL-5-producing 
CD34+ cells have been found in peripheral 
blood and bone marrow samples in people 
with EGPA. As such, the potential benefits of 
targeting these early-phase cells to reduce 
the accumulation of tissue eosinophils  
in EGPA prior to any damage is an  
unmet need of the disease.87 

At least part of EGPA manifestations are 
mediated by Th2 cells and their associated 
cytokines, including IL-5, along with IL-4 
and IL-13 (Figure 1).4 Understanding IL-5 
involvement in EGPA could provide a valuable 
biomarker for the disease and enhance 
understanding of disease activity. Studies 
indicating a role for IL-5 in EGPA include 
one showing that T cell primed peripheral 
blood mononuclear cells from patients 
with EGPA release significantly more IL-5 
than cells from healthy controls.88 Another 

investigation found that increased plasma 
IL-5 was correlated with EGPA exacerbation 
and demonstrated that, during active EGPA, 
IL-5 expression is elevated in BALF compared 
to people with inactive EGPA and those with 
asthma, indicating a role of IL-5 in EGPA 
activity levels. A significant correlation was 
also found between IL-5 concentration in 
BALF and both BALF and blood eosinophil 
levels, indicating the elevated presence of 
IL-5 in airways during active EGPA.89 A role for 
B cells in EGPA pathogenesis has also been 
suggested4 as IL-5 from Th2 cells acting on B 
cells leads to elevated ANCA, IgE, and IgG4 
production in people with EGPA.82 The role of 
IL-5 in EGPA is further supported by several 
studies highlighting the effectiveness of IL-5/
IL-5Ra-targeting medications for  
this disease.4,81,82 

CONCLUSION

Numerous studies highlight the role of IL-5 
and eosinophils in Type 2 inflammation 
occurring in SA, CRSwNP, and EGPA 
(Figure 1). Eosinophil activation and 
number is related to disease severity in 
these diseases, underscoring the potential 
benefits of inhibiting eosinophil priming and 
activation, as well as targeting upstream 
eosinophil generation.90 Current advances 
in understanding the complexity of the 
IL-5 pathway across all relevant cells and 
targets, not just eosinophils, is beneficial for 
patient phenotyping and management. Such 
approaches could lead to more effective 
disease control, prevent tissue damage and 
remodelling, help manage chronicity, and 
improve a patient’s overall health-related 
quality of life.1,3,6,10,15,21,23,45,52,56,67,68,85,89
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