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Abstract
Gadolinium-based contrast agents (GBCA) have played a pivotal role in enhancing the 
diagnostic capabilities of MRI for several decades. The application of gadolinium as a contrast 
agent opened new possibilities for early diagnosis with greater accuracy of a wide range of 
conditions, including neurologic and vascular disorders, tumours, cancers, inflammation, and 
more. Gadolinium is a lanthanide metal known for its strong paramagnetic properties, which 
produce stronger signals in MRI. The presence of GBCAs in the body alters the magnetic 
properties of nearby water molecules, which changes the appearance of the organs or blood 
vessels containing contrast when the MRI images are taken. The safety of GBCAs has been 
widely studied in recent years. Gadolinium is generally considered a safe and relatively non-
toxic contrast agent, according to many of these studies. Many clinical studies have also 
shown toxic effects, allergic reactions, and gadolinium deposition in different body tissues 
and the brain. The rare condition of nephrogenic systemic fibrosis in adult patients with renal 
dysfunction has been the most popular topic of research and the main concern amongst all 
other risks of post-GBCA use. This review explores various research papers regarding GBCAs 
and focuses on providing insight into how different types of GBCAs are commonly used today 
in MRI scans, their properties, clinical applications, safety concerns, and recent and possible 
future developments in this field of medical radiology. 

Key Points

1. The use of gadolinium-based contrast agents (GBCA) in MRI has been associated with adverse effects, including 
free gadolinium deposition, nephrotoxicity, and allergic reactions in patients. This has raised concerns about their 
safety and led to the development of safer MRI contrast agents.

2. In this study, applications of different GBCAs, related potential diseases, side effects, and accumulation of 
gadolinium were reviewed from numerous studies. Recent approaches and investigations in the development of 
safer MRI contrast agents were explored and discussed briefly.

Article

https://creativecommons.org


64 EMJ  ●  September 2024  ●  Copyright © 2024 EMJ   ●   CC BY-NC 4.0 Licence

INTRODUCTION 

Gadolinium is an invaluable contrast 
agent in MRI that has various important 
benefits in radiology. Its unique magnetic 
properties allow for increased contrast in 
MRI images, making it easier to identify and 
better understand anatomical structures 
and pathologies. They are particularly very 
effective in detecting lesions as well as 
pathological changes in the central nervous 
system, cardiovascular system, and other 
body regions.1,2 This allows early and 
accurate diagnosis, appropriate treatment 
planning, as well as the monitoring of 
disease progression. Gadolinium-based 
contrast agents (GBCA) come in several 
forms, including linear and macrocyclic 
chelates, which are designed to increase 
the stability of gadolinium in the body 
and reduce the risk of toxic effects.3,4 
Gadolinium contrast agents can be tailored 
to the needs of certain MRI examinations. 
Although gadolinium is generally considered 
safe, it is necessary to assess the risks 
of rare allergic reactions and the risk of 
accumulation in various body tissues. 
Several types of GBCA are available in 
today’s market, the most commonly used 
amongst them such as gadopentetate 
dimeglumine, gadobutrol, gadoterate 
meglumine, and gadofosveset trisodium 
have been reviewed and explored in line 
with their different application and  
safety profiles.

Gadopentetate Dimeglumine 
Gadopentetate dimeglumine (commonly 
known by its brand name Magnevist [Bayer 
Radiology, Leverkusen, Germany]) was the 
first gadolinium-based contrast agent (GBCA) 
that became available in 1988 and is a 
widely used GBCA in medical imaging. It is a 
paramagnetic complex comprising gadolinium 
(Gd) ions chelated with diethylenetriamine 
penta-acetic acid (DTPA) and meglumine.5 
This chelation enhances the stability 

and solubility of the compound, making 
it suitable for intravenous administration 
in imaging procedures. The presence of 
unpaired electrons in Gd ions allows for the 
manipulation of magnetic resonance signals, 
improving the visualisation of anatomical 
structures in MRI.6,7

Gadopentetate dimeglumine enhances 
tissue differentiation, aids lesion detection, 
and provides diagnostic and treatment 
information. It is used in neuroimaging, 
musculoskeletal imaging, cardiac imaging, 
body imaging, and angiography. In 
neuroimaging, it helps visualise brain and 
spinal cord lesions, peripheral vascular 
abnormalities, demyelination diseases, and 
malignant tumours.8,9 In musculoskeletal 
imaging, it improves the visualisation of 
soft tissue injuries, joint disorders, and 
tumours. For cardiac MRI, it evaluates 
myocardial perfusion, viability, and cardiac 
function. In body imaging, it recognises liver 
lesions, including hepatocellular carcinoma, 
abdominal tumours, and assesses renal 
function.10 In angiography, it is used for 
magnetic resonance angiography (MRA) 
to examine blood vessels. Gadopentetate 
dimeglumine-enhanced MRI showed great 
improvement in liver lesion detection and 
characterisation compared to unenhanced 
MRI scans. A study by Attyé et al.11 used 
gadopentetate dimeglumine to assess 
blood–brain barrier permeability in patients 
with multiple sclerosis.11 Dynamic contrast-
enhanced MRI was used to monitor changes 
in barrier integrity. The results showed that 
gadopentetate dimeglumine can provide 
important information for evaluating disease 
progression and treatment response in 
patients with multiple sclerosis.12

While gadopentetate dimeglumine is 
generally safe, there are some potential 
risks associated with its use.13 Studies have 
demonstrated its efficacy while showing 
a low incidence of acute adverse effects, 
especially in paediatric patients, and its 

3. GBCAs with a linear structure have higher risks despite their greater specificity and sensitivity. Macrocyclic 
GBCAs are safer and preferred, with generally low side effects, though efficacy can vary. Patients with kidney 
issues or frequent MRIs face higher risks. Guidelines based on the latest scientific findings are essential for 
improving patient safety.
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safety profile was further improved in 
patients under sedation.14 Compared to 
macrocyclic GBCAs, linear GBCAs have 
a less stable molecular structure, which 
increases the likelihood that they would 
extravasate i.e., leak out of blood vessels into 
surrounding tissues. Extravasation can cause 
tissue irritation, oedema, and possibly raise 
the risk of compartment syndrome, especially 
when it happens in high volumes.15 There 
have been reports of rare fatal reactions 
associated with their use, including laryngeal 
oedema, hypotensive shock, respiratory 
arrest, arrhythmia, and bronchospasm.16

The main concern is the development of 
nephrogenic systemic fibrosis (NSF) in 
patients with kidney problems.17 NSF is a 
rare but serious condition characterised 
by skin and organ fibrosis. Several studies 
during the last decade reported the 
deposition of gadopentetate dimeglumine 
in the brain tissues and other organs.18-27 
Adverse reactions like allergies, headaches, 
or nausea have also been reported, so 
prompt recognition and management are 
important.28,29 To minimise these risks, 
the patient’s poor kidney function must 
be assessed before giving gadopentetate 
dimeglumine, and the use of the lowest 
effective dose was suggested in  
many studies.23,30

In March 2016, the European Medicine 
Agency (EMA) began reviewing the GBCAs 
at the European Commission’s request. 
Following the safety evaluation in 2017, 
the EMA recommended the suspension 
of the use of linear agents such as 
intravenous gadopentetate dimeglumine, 
gadoversetamide, and gadodiamide. 
However, gadopentetate dimeglumine 
intra-articular usage was still permitted 
under very specific guidelines. The EMA 
introduced these measures according to 
their scientific reviews suggesting greater 
risks of gadolinium retention from linear 
GBCAs compared to macrocyclic GBCAs. 
Proper patient selection, monitoring, and 
following safety guidelines can ensure the 
safe and effective use of this contrast agent 
in clinical practice.31

Gadobutrol  
Gadobutrol (commonly known in the 
market as Gadovist [Bayer AG, Leverkusen, 
Germany]), approved by the FDA in 2015, 
is a widely used contrast agent in MRI, 
recognised for its safety and effectiveness 
in improving the visualisation of various 
tissues within the body, as evaluated by a 
large-scale study in 23,000 patients.32 It 
has also been found to be well-tolerated, 
especially in children even under the age of 
2 years, further supporting its safety profile 
across different age groups.33 Specifically, 
it is highly beneficial for vascular and 
soft tissue imaging. Gadobutrol is a type 
of GBCA that belongs to the category of 
macrocyclic agents. One notable advantage 
of gadobutrol is its lower risk of causing NSF 
compared to other GBCAs. As a result, it is 
often the preferred choice for patients with 
compromised kidney function.34,35

A study conducted by Prince et al.32 
showcased the excellent diagnostic 
performance and safety record of gadobutrol 
in contrast-enhanced MRI scans of the 
brain.32 The research involved a significant 
number of patients and revealed that 
gadobutrol consistently produced high-
quality images, facilitating the accurate 
identification and characterisation of brain 
abnormalities. Additionally, it was observed 
that minimal occurrence of adverse 
events was associated with gadobutrol 
administration, further emphasising its safety 
in clinical settings. It was proven by studies 
that it is a safe and efficient GBCA for use in 
both MRI and MRA, enabling the visualisation 
of pathological lesions and abnormalities in 
vascular perfusion and flow across various 
body regions including the prostate.36,37,38 
This includes a wide range of patients, such 
as term neonates, paediatric patients, adults 
of different age groups, and individuals 
with renal and hepatic impairment and 
cardiovascular disease.35

Gadobutrol can be detected in 
cerebrospinal fluid samples for extended 
periods of time, even in individuals with 
normal kidney function and an intact blood–
brain barrier. This highlights its potential for 
use in the spinal canal. Clinical studies have 
shown that gadobutrol does not have any 
negative effects on kidney function, making 
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it a safe contrast agent for patients with 
impaired renal function.39,40 Furthermore, 
there have been studies investigating the 
intrathecal use of gadobutrol, specifically 
in relation to examining cerebrospinal fluid 
dynamics and enhancing glymphatic flow in 
conditions like idiopathic normal pressure 
hydrocephalus.41 These studies aimed to 
determine the minimum effective dose 
required to gather diagnostic information, 
showcasing the potential of gadobutrol 
for such applications. The extensive 
research conducted supports its safety 
and effectiveness as a contrast agent for 
various patient populations and clinical 
scenarios. Very rare cases of adverse 
reactions, such as fatal anaphylactic 
reactions, have also been reported.42 Its 
strong stability, safety in cases of renal 
impairment, and potential for intrathecal  
use make it a valuable tool in  
diagnostic imaging.43

Gadoterate Meglumine  
Gadoterate meglumine (commonly known 
as Dotarem [Guerbet, Villepinte, France]), an 
MRI contrast agent, received FDA approval 
in 2013. It is a paramagnetic compound that 
enhances the visibility of blood vessels, 
organs, and tissues during imaging, allowing 
for a more detailed and accurate diagnosis.44 
In terms of effectiveness, gadoterate 
meglumine has been widely used and proven 
to be effective in improving the quality 
and diagnostic accuracy of MRI scans. It 
helps to enhance the visualisation of blood 
vessels and abnormalities, making it easier 
for healthcare professionals to identify and 
characterise various medical conditions.45,46

Regarding the safety aspects of gadoterate 
meglumine, it is considered a safe contrast 
agent when used appropriately.47 It has 
a favourable safety profile and is well-
tolerated by most patients.48,49 However, 
as with any contrast agent, there are some 
potential risks and side effects, although 
they are rare. Previous studies have 
shown a few risks, which include allergic 
reactions, NSF in patients with severe 
kidney dysfunction, and the possibility of 
accumulation in brain tissue in patients with 
multiple administrations.44-46,50-52 Its stability 
plays an important role in selection. Safety 

can be dependent on the structure and 
stability of contrast agents. Gadoterate 
meglumine is a macrocyclic as well as 
an ionic agent, which supports higher 
thermodynamic and kinetic stability. The 
high molecular stability of the agent can 
minimise the risk of gadolinium release 
from the GBCA molecule.53,54 Gadoterate 
meglumine has gained a significant share 
of the USA market and continues to be 
a leading choice for radiologists, with no 
unconfounded cases of NSF reported. It is 
typically administered intravenously before 
an MRI scan. The dosage and administration 
method depend on the patient’s age, weight, 
and the specific imaging procedure being 
performed.55 Furthermore, gadoterate 
meglumine is compatible with most MRI 
equipment and does not interfere with 
the imaging process. It provides excellent 
contrast enhancement and allows for clear 
visualisation of anatomical structures and 
pathological abnormalities. 

Gadofosveset Trisodium 
Gadofosveset trisodium (also known as 
Vasovist [Bayer Schering Pharma AG, Berlin, 
Germany]), a gadolinium-based blood pool 
contrast agent, was approved by the FDA in 
2008 for the evaluation of aortoiliac disease 
in adults.56 Gadofosveset trisodium has 
been used mainly in the MRA of the vascular 
system for the diagnosis of certain disorders 
of the heart and blood vessels. The agent 
showed to have a prolonged intravascular 
residence time, making it particularly 
useful for evaluating venous, dynamic, and 
functional vascular diseases with a single 
low-dose contrast injection.57 It is considered 
an 'intravascular' contrast agent due to 
its transient, reversible, and noncovalent 
binding to serum albumin.58 This property 
allows the contrast agent to circulate for 2–3 
hours after intravenous injection, making it 
suitable for various imaging studies.56,59

Furthermore, gadofosveset trisodium has 
been compared with other contrast agents, 
such as gadobenate dimeglumine, showing 
similar safety profiles and comparable image 
quality in certain studies.60,61 Its prolonged 
plasma half-life and increased relaxivity 
due to its ability to bind reversibly to serum 
albumin and form small nanoparticles 
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has been highlighted as a key feature, 
contributing to its prolonged imaging 
capabilities and potential applications as a 
negative contrast agent for discriminating 
metastatic from nonmetastatic lymph 
nodes.62,63 These unique properties 
of gadofosveset trisodium have been 
extensively studied and compared with other 
contrast agents, showcasing its potential 
advantages in specific imaging scenarios.64-66 
It has been evaluated for its potential 
use in various medical conditions such as 
endometriosis, and in the preoperative 
evaluation of potential living kidney donors, 
demonstrating its versatility and potential 
clinical utility.67,68

Also, as a blood pool contrast agent, it has 
been explored in the context of equilibrium-
phase MRA, demonstrating its potential 
to overcome challenges associated with 
suboptimal bolus timing during whole-body 
vascular imaging.69 Gadofosveset trisodium 
is a subject of research interest due to its 
unique properties as a blood pool contrast 
agent. Studies have highlighted many 
advantages and the potential use of this 
agent. Further research may continue to 
explore its utility and potential. 

Recent Developments 
Research in developing alternative MRI 
contrast agents is multidisciplinary and 
involves chemistry, materials science, and 
biomedical engineering. Recent research has 
emphasised the necessity for alternatives 
to GBCAs in MRI due to concerns regarding 
gadolinium retention and potential toxicity.70 
While GBCAs have significantly improved 
MRI scans for over a few decades, issues 
such as gadolinium deposits in the brain 
and NSF have led to the exploration of 
new contrast agents.71-74 Various materials 
such as manganese, iron oxide, organic 
molecules as small peptides, silicon-
based, fluorine-based, biodegradable, and 
various nanoparticles including those made 
from gold, carbon nanotubes, fullerenes, 
polymers, liposomes, and viral nanoparticles 
have been investigated in recent years.75

Manganese has been explored as an 
alternative to gadolinium due to its 
paramagnetic properties. Manganese-based 

contrast agents have shown promise as 
complementary agents for liver imaging, 
potentially serving as alternatives for 
specific imaging requirements.76 It has been 
one of the most promising and popular in 
research amongst the materials investigated 
for MRI contrast.77 Amongst paramagnetic 
GBCA, gadoxetate disodium (also known 
as primovist/eovist [Bayer Healthcare, 
Leverkusen, Germany)], is a hepato-specific 
contrast agent predominantly used for 
improved detection and characterisation 
of liver lesions, including hepatocellular 
carcinoma. Due to its hepatocyte-specific 
uptake and excretion through the biliary 
system, it can provide dynamic and 
hepatobiliary phase images.78,79 It offers 
unique advantages in liver MRI but has also 
shown challenges such as transient motion 
artifacts in many studies.80,81

Many efforts have also been directed 
towards developing gadolinium-free 
contrast agents, with endeavours to 
integrate gadolinium into nanostructures for 
enhanced MRI contrast imaging.82,83 These 
advancements aim to enhance the safety 
profile of contrast agents while upholding 
the efficacy in MRI scans. Nanoparticles, 
including those made from gold, carbon, 
or polymers, are being investigated for 
their potential as MRI contrast agents. 
These nanoparticles can be engineered 
to have tuneable properties and can be 
functionalised for targeted  
imaging applications.

Iron oxide nanoparticles have been 
investigated; most importantly, 
superparamagnetic iron oxide nanoparticles 
(SPIONs) have shown great contrast by 
altering the relaxation times of nearby water 
protons. Research is ongoing to improve 
their biocompatibility, imaging efficacy, 
and clearance from the body, which 
indicates a shift towards exploring novel 
contrast agents beyond gadolinium.84,85 
Amongst SPION agents, ferumoxytol 
exhibited promise most recently as an 
alternative to GBCAs for vascular imaging.86 
Ferumoxytol, a compound coated with 
carboxymethyldextran, was employed 
as a contrast agent on SPION.87 Unlike 
gadolinium, ferumoxytol has various 
features. Because of its impaired  
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blood–brain barrier, it is a big agent that 
does not go through blood arteries to reach 
tumours quickly. While gadolinium agents 
improve the lesion after minutes, the lesion 
is enhanced one-day following injection. 
Ferumoxytol has a half-life of around 14 
hours; this extended half-life enables the 
visualisation of tumour vasculature and the 
determination of the relative cerebral blood 
volume for tumours that may be malignant. 
Manganese is also a significant element in 
the body, enso dogenous mechanisms can 
remove it.56,82

Organic molecules like small peptides 
or nanoparticles are being explored as 
alternatives to GBCAs. These agents can be 
tailored to have specific targeting capabilities 
and can potentially reduce the risk of toxic 
effects associated with metal-based contrast 
agents. Inorganic molecules, such as silicon-
based nanoparticles have also emerged 
with a potential alternative to GBCAs. 
These nanoparticles can be functionalised 
with targeting ligands and have shown 
improvements in preclinical studies.75,88 Their 
contrasting effects and unique properties 
could position them as viable substitutes 
for GBCAs in future.89 Fluorine-containing 
compounds that contain both organic 
and inorganic components are also being 
explored for their potentials as they can 
provide both positive and negative contrast 
that may offer advantages in terms of safety 
and imaging sensitivity. Fluorinated agents 
such as theranostics have been extensively 
investigated for diseases like pulmonary 
embolism, inflammatory diseases,  
and cancer.90,91

Biodegradable materials that can be easily 
cleared from the body after imaging have 
also shown promise in the development 
of contrast agents. These agents aim 
to minimise long-term retention and 
potential toxic effects. The research on 
biodegradable contrast agents is diverse 
and promising, with studies focusing 
on various aspects such as cancer 
detection, immune response tracking, 
and the development of biodegradable 
macromolecular contrast agents.92,93

Recent studies worked on dosage 
reduction together with improved lesion 

characterisation, clinical efficacy, and 
increased relaxivity.87 Gadoquatrane, a 
newly developed contrast agent based 
on tetrameric gadolinium, has significantly 
improved stability and relaxation.94,95 
With one gadolinium ion and a non-ionic 
macrocyclic GBCA structure, the recently 
developed agent gadopiclenol was made by 
Robert P et al.96 with the goal of producing 
T1 relaxivity that is two to three times higher 
than that of existing gadolinium factors 
without sacrificing any of their physical 
properties. After five months of gadopiclenol 
treatment, the amount of gadolinium 
deposited in the cerebellum is comparable 
to that of macrocyclic gadobutrol.97 This new 
agent gadopiclenol (marketed as elucirem 
[Guerbet, Villepinte, France]), was tested on 
animals to see if there is cerebral deposition. 
It incorporates a phenyl group into DO3A, 
resulting in the relaxation time of Gd-DOTA 
without phenyl group alteration.98,99

To conclude, recent research focused on 
understanding their mechanisms of toxicity, 
distribution in the body, potential neurotoxic 
effects, and exploring alternative contrast 
agents to address safety concerns. These 
studies contribute to the ongoing efforts to 
improve the safety and efficacy of contrast 
agents used in MRI.

DISCUSSION 

The field of MRI contrast agents is evolving, 
and scientists have been dedicated to the 
development of safer GBCAs that minimise 
the potential for negative impacts. A 
noteworthy advancement in this pursuit 
has been the introduction of macrocyclic 
chelates, which are generally linked to 
decreased rates of gadolinium release.100,101 
Gadolinium-based contrast agents continue 
to serve as exceptional tools in diagnostic 
imaging. They allow for enhanced 
visualisation of anatomical structures and 
pathologies in MRI scans. Numerous studies 
have demonstrated the positive impact 
of GBCAs on MRI images by improving 
specificity, sensitivity, and visibility. This 
is achieved by modifying the inherent 
properties of tissues, leading to a significant 
increase in signal intensity through binding 
to serum proteins and creating a noticeable 
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contrast. However, the safety profile of 
GBCAs, particularly in patients with renal 
impairment, remains an ongoing area of 
research and debate. While newer and safer 
agents are being developed, clinicians must 
carefully assess the risk–benefit ratio when 
utilising GBCAs in their medical practice.102

Gadopentetate dimeglumine was a widely 
used contrast agent in MRI scans before 
the suspension, improving accuracy in 
liver and brain imaging. Multiple studies 
support its effectiveness.11,103 However, 
caution must be exercised due to the 
risks associated with GBCAs, particularly 
nephrogenic systemic fibrosis in patients 
with kidney issues and dialysis.86 Patients 
with sickle cell disease may be at higher 
risk of potential oxidative stress and 
vascular complications, and in such 
cases, macrocyclic GBCAs are preferred, 
although there is no evidence of adverse 
effects such as intra-vascular problems 
or haemolytic events induced by GBCAs 
in patients with sickle cell disease.104 
Proper patient selection, monitoring, 
and adherence to safety guidelines are 
vital for the safe use of this contrast 
agent. While the risk of compartment 
syndrome from GBCAs is relatively rare, 
it is higher with linear GBCAs, especially 
when there is extravasation, high dosage 
administration, or impaired patient venous 
access. Minimising this risk requires close 
monitoring of the injection site and the use 
of proper injection procedures. 

Both gadoterate meglumine and gadobutrol 
are GBCAs with comparable safety profiles, 
efficacies, and macrocyclic chemical 
structures. When it comes to gadolinium 
retention, macrocyclic GBCAs are regarded 
as safer than linear GBCAs.105 The likelihood 
of gadolinium being released from the 
complex and remaining within the body 
is reduced by the macrocyclic structure. 
As such, macrocyclic agents are usually 
preferred when choosing GBCAs for an MRI 
scan, especially for patients who are more 
likely to retain gadolinium, such as those 
with compromised renal function.106

Alternative contrast agents, such as 
those based on manganese, are being 
developed in an ongoing effort to offer 

comparable diagnostic capabilities without 
the same safety issues.107 Although GBCAs 
are generally known to be safe, there 
are growing worries regarding possible 
side effects, especially in patients with 
compromised renal function. In these 
patients, the usage of GBCAs is linked to 
NSF, a rare but dangerous syndrome.23,30 
Furthermore, although the clinical 
implications of this discovery are still 
uncertain, various recent investigations 
have raised doubts about the deposition of 
gadolinium in various tissues.98,108

Numerous research studies have also 
demonstrated the presence of gadolinium 
deposition in various organs of the human 
body. This occurs as a result of the release 
of free gadolinium into different organs and 
tissues, which has raised concerns about 
the use of gadolinium agents. The focus 
of this study was to investigate potential 
diseases and side effects associated with 
the accumulation of gadolinium in the 
patient’s body, particularly in organs such 
as the brain and bones where gadolinium 
deposition has been observed. The 
study also explored the development of 
new contrast agents that do not contain 
gadolinium or the invention of next-
generation gadolinium agents, with the aim 
of enhancing their safety and effectiveness. 
One of the diseases associated with 
gadolinium retention is NSF, while another is 
gadolinium deposition disease (GDD).96,109

GBCAs continue to be popular in  
medical imaging, specifically in MRI scans, 
to enhance the contrast of images and 
improve the accuracy of diagnosis.  
These agents contain paramagnetic ions 
that aid in producing clearer images. 
In order to prevent the toxicity of free 
gadolinium ions, they are bound to organic 
ligands, forming stable chelates called 
Gd+3 chelates. This process reduces 
the release of free gadolinium ions and 
prevents their interaction with endogenous 
anions like CO3-2 and PO4-3 which could 
potentially result in the formation of 
insoluble compounds in the bloodstream 
and their accumulation in tissues.110  
GBCAs do not worsen renal insufficiency 
and are generally considered safe. 
Nonetheless, mild adverse reactions 
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may occur following their administration, 
including nausea, vomiting, discomfort 
at the injection site, headache, and 
dizziness. Evidence exists in a few cases 
that confirms the presence of gadolinium 
deposits in various tissues such as bone, 
kidneys, brain, skin, and lymph nodes. 
The specific nature of these deposits is 
still unknown, and currently, there is no 
evidence linking gadolinium accumulation 
to direct tissue damage.

However, research studies have 
documented specific disorders associated 
with the retention of gadolinium, which 
include hypersensitivity reactions, NSF, and 
GDD.111-114 These conditions are uncommon 
and typically manifest in individuals 
who have pre-existing risk factors or 
compromised kidney function.

From the review of many studies, reports 
of acute and chronic adverse effects 
and notable concerns about GBCAs have 
been seen. Severe conditions like NSF, 
which affects people with significant 
kidney dysfunction and dialysis; concerns 
about potential long-term effects due to 
gadolinium retention in tissues like the brain 
and bones; mild-to-severe allergic reactions 
that require careful patient screening and 
monitoring; recommendations for cautious 
use of GBCAs during pregnancy, while 
breastfeeding has been deemed safe; 
paediatric patients are advised to use 
GBCAs with caution due to potential risks; 
GDD and any potential cancer risks are still 
being investigated in ongoing research for 
further evidence and understanding. 

To reduce potential risks, it is advised to 
administer the lowest effective dose of 
GBCAs, particularly in patients with impaired 
renal function. The dosage calculation 
of GBCAs should be individualised, 
considering factors like age, renal function, 
and imaging needs. By adhering to 
established guidelines and incorporating 
the latest research on safety and efficacy, 
healthcare providers can optimise GBCA 
use while minimising risks. 

The EMA guidelines provide specific dosing 
recommendations for various patient groups, 
with dosage generally calculated based on 

(volume) body weight for both paediatric and 
adult patients. Dosage recommendations 
can vary depending on the specific agents. 
Gadobutrol and gadopentetate dimeglumine 
are recommended at 0.1 mmol/kg body 
weight, equivalent to 0.1 mL/kg body weight 
for a 1.0 M solution in paediatric and adult 
patients. For gadoterate meglumine, the 
recommended dose is 0.1 mmol/kg body 
weight, equivalent to 0.2 mL/kg body weight 
for a 0.5 M solution in paediatric patients 
including term neonates, and adults. In 
MRA, a dose of up to 0.3 mmol/kg body 
weight, or 0.6 mL/kg body weight, may be 
used. Gadofosveset trisodium is specifically 
recommended for MRA of blood vessels in 
adults, with a dosage of 0.03 mmol/kg body 
weight, equivalent to 0.12 mL/kg body weight 
of a 0.25 M solution. Additionally, higher 
doses of GBCAs have been shown to improve 
the detection rate of brain metastases.115 
Nonetheless, it is crucial to balance the 
enhanced imaging benefits with the potential 
risks of gadolinium deposition and toxicity.

The advantages and drawbacks of employing 
GBCAs must be carefully evaluated. 
Patients, especially those at higher risk, 
must be monitored to ensure their safety 
during diagnostic procedures. As research 
progresses, these advancements in 
alternative contrast agents, along with a 
deeper understanding of their complexities, 
are anticipated to play a significant role in 
providing clinicians with the ability to better 
optimise imaging protocols and ensure 
accurate diagnostic outcomes. 

The review was carried out on multiple 
previous studies, and one notable limitation 
of this review is that it incorporates 
some findings from certain studies that 
were published without undergoing a 
comprehensive scientific review process. 
While these papers provided valuable 
insights, the authors believe they require 
further study and analysis. Future work and 
the next step from this review is to conduct 
a detailed study and review of each type of 
GBCA individually, with a particular focus 
on safety concerns, to contribute to the 
development of safer MRI contrast agents.
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