Lower-Risk Myelodysplastic Syndromes: **Putting Anemia Under the Spotlight**

The publication of this infographic was funded by Bristol Myers Squibb. Oncol AMJ. 2024;1[1]:44-45. https://doi.org/10.33590/oncolamj/WKMQ3310.

Date: 07/24 Job code: HE-US-2400517

Risk stratification

The IPSS-R is the most commonly used risk stratification system in MDS, taking into account the degree of cytopenia, proportion of blasts in the bone marrow, and presence of cytogenetic abnormalities.^{5,16,1}

Recently, the IPSS-M was developed, which integrated information from 31 gene mutations in addition to the IPSS-R components.^{5,17,}

14%	33%	11%	11%	14%
Very Low	Low	Moderate-Low	Moderate-High	High
		moderate Low	moderate riight	

Burden on Quality of Life Physical Problems

Epidemiology of MDS

MDS occurs predominantly in the aging population

Unmet needs in MDS

4.0 per 100,000

22

Physical problems

Role functioning

36.1% of patients wit derate or severe problems with us vities (e.g., work, housework, or vities).⁶ The disease may affect e

Emotional problems

oderate or severe issues with anxie atients often find the emotional im ore problematic than the physical

Social functioning

34% of patients receiving blood tra felt they were burdening their family I ransfusion requirements may disrupt rou and take time away from family and frier

Abbreviations: AMI : acute myeloid leukemia: CCUS: clonal cytopenia of undetermined significance: del: deletion: EB: excess blasts: FISH: fluorescence in situ hybridisation: GI: gastrointestinal: IB: increased blasts: ICC: International Consensus Classification: IPSS-M: Molecular International Prognostic Scoring System; IPSS-R: Revised International Prognostic Scoring System; ITP: idiopathic thrombocytopenic purpura; LB: low blasts; LR: lower-risk: MDS: mvelodysplastic syndromes: MLD: multilineage dysplasia: NOS: not otherwise specified: OS: overall survival: OoL: quality of life:

RBC: red blood cell; SLD: single-lineage dysplasia; WHO: World Health Organization.

References

Intervense

Two updated classifications for MDS were developed in 2022: the WH05 and

the ICC for Myeloid Neoplasms and Acute Leukaemia, which are overall similar,

Symptoms of MDS

Fever

Classification9,13-15

ICC

Not included

MDS with EB

Not included

MDS/AML

MDS with del(5g)

MDS with mutated SF387

MDS with mutated TP53

MDS/AML with mutated TP53

Clinical suspicion of cytopenia

MDS-NOS with SLD, or with MLD

Most common

symptoms of MDS

Bone marrow blasts WHO5

CCUS

MDS, hypoplastic

MDS with LB and

MOS with LB and

SF381 mutation*

MDS with fibrosis

MDS with biallelic

TP53 inactivation

but with some differences in diagnostic criteria and nomenclatures.^{9,1}

MDS with IB1

MDS with IB2

isolated 5q del

MDS with LB

No dysplasia

<5%

5-9%

10-19%

- Hasseriian RP et al. Diagnosis and classification of myelodysplastic syndromes, Blood, 2023;142(26):2247-57 Hasserjian RP et al. Diagnosis and classification of myelodysplastic syndromes. Biod. 2023;142(26):2247-57. Foran JM, Shammo JM. Clinical presentation, diagnosis, and prognosis of myelodysplastic syndromes. Am J Med. 2012;125(Suppl 7):56-13. Weinberg OK, Hasserjian RP. The current approach to diagnosis in the era of personalized medicine. Semin Diagn Pathol. 2023;40(3):172-81. Samoe P., Patel S. Swelodysplastic syndrome: Approach to diagnosis in the era of personalized medicine. Semin Diagn Pathol. 2023;40(3):172-81. Xu ML, Hasserjian RP. Updates in Classification of Myelodysplastic Syndrome. Cancer J. 2023;29:122-9. Abero DA et al. International Consensus Classification of myelodysplastic Syndrome. Cancer J. 2023;29:122-9. Abero DA et al. International Consensus Classification of majorito negainization classification of haematolymphoid turnous: myeloid and histocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703-19. Greenberg PL et al. Revised international prognostic soring system for myelodysplastic syndromes. Blood. 2012;12(1):22:456-65. Volpe VD et al. SOHO state of the art updates and next questions: treatment of lowe risk myelodysplastic syndromes. Blood. 2012;12(1):24:86-66. Bernard E et al. Molecular International Prognostic Scoring System for myelodysplastic syndromes. Blood. 2012;12(1):21:2456-65. Bernard E et al. Molecular International Prognostic Scoring System for myelodysplastic syndromes. Blood. 2012;12(1):21:202220008. Bernard E et al. Molecular International Prognostic Scoring System for myelodysplastic syndromes. BLM Evid. 2022;1(7):EVIDoa220008. Bernard D et al. Treatment of anemia in transfusion-dependent and non-transfusion-dependent lower-risk MDS: current and emerging strategies. Hemasphere. 2019;3(6):e314.

SCAN to visit spotlightonanemia.com

MDS Diagnosis Algorithm

Diagnosis requires a combination of clinical suspicion, laboratory tests, hematologic and morphologic analysis, and cytogenetic and molecular evaluation^{9,11,12}

> Minimal prerequisites to establish MDS diagnosis:4,11

Exclusion of other potential disorders as primary reason for dysplasia/cytopenia

The diagnosis of MDS also requires ≥1 of the following:⁴

1. ≥10% morphologic dysplasia (with or without an increase in blast cells) in ≥1 of the 3 lineages of hematopoietic cells 2. A blast cell count of 5-19%

3. A specific MDS-associated karyotype, such as del(5q), del(20q), +8, or -7/del(7q)

Treatment goals for anemia in LR-MDS⁵

Achieve RBC transfusion independence

Improve QoL

Improve hematological status

Improve OS and delay AML transformation

17% Very High

ullin Bristol Myers Squibb[®]

©2024 Bristol-Myers Squibb Company